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Abstract. We present a new example of a potential such that the corresponding Schrödinger
operator in the halfaxis has singular continuous spectrum embedded in the absolutely con-
tinuous spectrum. The singular part is supported in an essentialy dense set. This general-
izes a result of C. Remling [3].
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1. Introduction

In this Letter we will consider one-dimensional Schrödinger equation on the
half-line

−y′′(x)+V (x)y(x)=Ey(x), x ∈ [0,∞) (1)

and the associated Schrödinger operators on L2[0,∞) given by

(Hαu)(x)=−u′′(x)+V (x)u(x) (2)

u(0) cosα +u′(0) sin α =0, α ∈ [0, π) (3)

There is a decomposition of the spectrum of these operators corresponding to the
decomposition of a measure on R into pure point, absolutely continuous (respect
to Lebesgue measure) and singular continuous parts. In Quantum Mechanics, in
most cases, the pure point part of the spectrum is related to the bound states of
the system and the absolutely continuous part to the scattering states (i.e. states
which in the limit are asymptotically far from the scattering center). The remain-
ing singular continuous part was usually supposed to admit no physical interpre-
tation. Therefore, the study of spectrum was concentrated in giving criteria which
guaranteed the absence of this kind of spectrum.

New interest in the singular continuous spectrum was generated due to the cel-
ebrated work of Pearson [2] in which, for the first time, an example of a potential
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with pure singular continuous spectrum and its physical interpretation were given.
In this work, Pearson introduced the so-called bump potentials

V (x)=
∞∑

n=1

gnVn(x −an) (4)

where gn >0, Vn(x)∈L1([−Bn,Bn]) and the intervals [an −Bn, an + Bn] are disjoint.
This kind of potentials lead to non-trivial asymptotics of the solutions of (1) and
have been used in a number of works.

In [1] a potential with singular continuous spectrum supported on an interval
I and absolutely continuous spectrum supported outside of I is given. The idea is
to take a function W(x), that will generate the potential, and whose Fourier trans-
form Ŵ (x) vanishes in a certain set S, then we have a.c. spectrum there. If W(x)

has compact support Ŵ (x) cannot vanish, therefore we need a bump function of
increasing support Bn→∞ such that

Vn(x)=χ[−Bn,Bn]W(x) (5)

converges to W(x) (see [1]).
Following this idea, Remling [3] went further giving the first example of embed-

ded singular continuous spectrum. Using a Cantor type set, Remling constructed
a bump potential so that

σac(Hα) = σess(Hα) = [0,∞)

σp(Hα)∩ (0,∞) = ∅

and, for a set of boundary conditions α of positive measure, one has

σsc(Hα)∩ (0,∞) �= ∅.

Actually, using the result of [4], it is possible to describe more precisely the loca-
tion of this set of boundary conditions.

In Remling’s example, the singular continuous spectrum is supported in a Can-
tor type set which is nowhere dense. In the present note we improve the above
mentioned result giving an example of an embedded singular continuous spectrum
supported in a dense set. The basic idea of the construction is the expectation that
one should have sc spectrum where the Fourier transforms of the bumps are not
square summable and ac spectrum elsewhere.

In order to get it, in Section 2 we construct a set F =⋃∞
n=0 Fn so that F and

its complement FC are essentially dense in an interval. Our potential will be the
bump potential (4) and (5) with

W(x)=
∫

R

∞∑

n=0

cnχFn(t) cos 2xt dt (6)



EMBEDDED SINGULAR CONTINUOUS SPECTRUM 227

and cn >0, such that
∞∑

n=N

cn �C2(1−γ )N (7)

where C is a constant, γ > 2 (for example cn = 2(1−γ )n). In Section 3, we present
the main ideas of the proof. These are closely related to the ones presented in [3].
A new Lemma 2 and some modifications of the proofs of Lemma 1 and Theorem
1 are needed. We also show the construction of an embedded singular continuous
spectrum with dense support in the full half-line.

2. Construction of the set F

In this section, we will construct a set F =⋃∞
n=0 Fn so that F and its complement

FC are essentially dense in an interval [a, b]. Here Fn are disjoint Cantor type sets
such that each Fn is constructed in the ‘holes’ of some previous set. So construct
Fn as follows:

(1) To construct F0, let δn > 0 be sufficiently small prescribed numbers and n ∈
N. Fix J0 = [a, b] ⊂ (0,∞) and let J1 = J0 \ (c

(0)

1 − δ0, c
(0)

1 + δ0) where c
(0)

1 is
the center of J0. In general, if Jn is a disjoint union of 2n closed intervals
with centers c

(n)
m (m = 1, . . . ,2n), set Jn+1 = Jn \⋃2n

m=1(c
(n)
m − δn, c

(n)
m + δn). The

set F0 =⋂∞
n=1 Jn is a Cantor type set and has Lebesgue measure |F0| = b −

a −∑∞
n=0 2n+1δn. We assume that δn are so small that

∑∞
n=0 2n+1δn < ∞ and

|F0| > 0. Denote by J1k the intervals removed in the construction of F0, so
J1k = (c

(n)
m − δn, c

(n)
m + δn) for some n, m depending on k.

(2) In each interval J1k construct as above a Cantor type set of positive measure
F1k. We assume that the corresponding δ1k

n satisfy δ1k
n � |J1k|/4 and δ1k

n � δn.
Let J2n denote each one of the removed intervals.

(3) In general, in the ith step we have a succession of intervals Jik. In each one of
them, construct a Cantor type set of positive measure Fik, taking δik

n such that
0 <δik

n � δn and δik
n � |Jik|/4. The last condition guarantees that the length of

the gaps in a descending sequence tends to zero. Denote by J(i+1)n each one
of the removed intervals. In the end take the sets F(2i+1)k constructed in the
odd steps and number them with a single index n∈ N: Fn =F(2i+1)k for some
i, k depending on n and let F =⋃∞

n=0 Fn. Set Gn =F(2i)k and G=⋃∞
n=0 Gn.

The sets F and G are essentially dense in the interval [a, b], that is for any sub-
interval J ⊂ [a, b], |F ∩ J |> 0 and the same for G. To see this let J ⊂ [a, b] be an
interval, there exist Jij (i odd corresponds to F , i even to G) so that Jij ⊂J and
|F |� |F ∩J |� |F ∩Jij |� |F ∩Fij | = |Fij |>0 and the same for G.



228 OLGA TCHEBOTAREVA

3. Mixed Spectrum

In the sequel C will denote a constant whose actual value may change from one
formula to the next.

LEMMA 1. Let F,W(x) be as above. Suppose sup δn2γ n < ∞ for some γ > 2.

Then W(x)=O
(
(1+|x|)−1+ 1

γ

)
.

Proof. Let Wi(x)= ∫
R

χFi
(t) cos 2txdt. It can be shown as in [3, Lemma 1] that

|Wi (x) |�C
(
(1+|x|)−1+ 1

γ

)
.

Here C does not depend on i, and using this estimation,

|W(x)|�
∞∑

i=0

ciC(1+|x|)−1+1/γ =O((1+|x|)−1+1/γ ). �

LEMMA 2. Suppose that sup δn2γ n < ∞ for some γ > 2 and set f (k) =∑∞
n=0

cnχGn(k). Then there exist functions fN(k)∈C∞
0 (R), fN(k)�0 such that

∫

R

|f (k)−fN(k)|dk �C2(1−γ )N

and
∫

R

|f ′
N(k)|dk �C2N+1.

Proof. By (7) we have

∣∣∣∣∣f (k)−
N∑

n=0

cnχGn(k)

∣∣∣∣∣=
∣∣∣∣∣∣

∞∑

n=N+1

cnχGn(k)

∣∣∣∣∣∣
�C2(1−γ )N .

For each Cantor type set Gn, n=1, . . . ,N take the set GN
n which was obtained

in the step N of its construction. GN
n is a disjoint union of 2N closed intervals:

GN
n =

2N⋃

k=1

[ak, bk].

Then

|GN
n \Gn|�

∞∑

n=N

2n+1δn �C2N(1−γ ).
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This implies that

∫ ∣∣∣∣∣

N∑

n=0

cnχGn(k)−
N∑

n=0

cnχGN
n
(k)

∣∣∣∣∣ dk �
N∑

n=0

cn|GN
n \Gn|�C2N(1−γ ).

One can approximate each one of the characteristic functions χGN
n
(k), n=1, . . . ,N ,

which are discontinous in ak, bk, k = 1, . . . ,2N with functions f N
n (k)∈C∞

0 (R),0 �
fN(k)�1

∫

R

|χGN
n
(k)−f N

n (k)|dk �2(1−γ )N ,

and such that for the derivative we have:

∫ ∣∣∣∣
(
f N

n (k)
)′∣∣∣∣ dk =

2N∑

k=1

∫ ak+�

ak−�

(
f N

n (k)
)′

dk −
∫ bk+�

bk−�

(
f N

n (k)
)′

dk

where �> 0 is a sufficiently small number. Then

∫ ∣∣∣∣
(
f N

n (k)
)′∣∣∣∣ dk =

2N∑

k=1

{
f N

n (ak +�)−f N
n (ak −�) −

−f N
n (bk +�)+f N

n (bk −�)
}

=2N+1.

This implies that

∫

R

∣∣∣∣∣

N∑

n=0

cnχGN
n
(k)−

N∑

n=0

cnf
N
n (k)

∣∣∣∣∣ dk �
N∑

n=1

cn2(1−γ )N ,

and

∫

R

∣∣∣∣∣∣

(
N∑

n=0

cnf
N
n (k)

)′∣∣∣∣∣∣
dk �

N∑

n=0

cn

∫ ∣∣∣∣
(
f N

n (k)
)′∣∣∣∣ dk �C2N+1.

Set fN(k)=∑N
n=0 cnf

N
n (k).

Let Ln = (an −Bn − an−1 −Bn−1) (where a0 = B0 = 0) be the distance between
the bumps and F the set constructed in the Section 2.

THEOREM 1. Suppose that the set F satisfies the assumptions of Lemma 1
with γ > 6. Let gn = n− 1

2 ,Bn = nβ with (1−2/γ )−1 < β < γ/8 and assume that
nβ/2γ Ln−1/Ln →0. Then the half-line Schrödinger operators Hα with potential V (x)

given by (4), (5) and (6) satisfy σac (Hα)=σess (Hα)= [0,∞), σp (Hα) ∩ (0,∞)=∅
and for every interval I ⊂ [a, b] we have σsc (Hα)∩ I �= ∅ for a set of boundary con-
ditions α of positive measure.
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Proof. Large parts of this proof are similar to the corresponding arguments of
the proofs of [3, Theorem 3.3, 3.5]. Therefore, these parts of the proof will only
be sketched.

It follows from V (x) → 0, that σess (Hα) = [0,∞) and since the separations of
barriers Ln grow fast, then (1) has no L2(0,∞) solutions for E >0.

We now show that for almost every k∈FC (we set FC =G∪ (R\ [a, b])) all solu-
tions of (1) are bounded. Since FC is dense everywhere in [0,∞), we conclude
σac(Hα)= [0,∞) (by [5]).

Let [c, d] be an interval in [0,∞) and let f (k) be defined by

f (k)=
∞∑

n=0

cnχGn(k)+χ[c,d](k)−χ[a,b](k)

([a, b] is the interval where the set F is constructed). Then we have f (k)=0 if k∈F

and f (k) > 0 if k ∈ G or k ∈ [c, d] \ [a, b]. Consider the measure dP(k) = cf (k)dk

where c is a constant such that
∫

dP(k)=1. Using Lemma 2 the proof is now com-
pleted as in [3, Theorem 3.5].

We now proceed as in the second part of the proof of [3, Theorem 3.3] in order
to show that ρac

α

(
F 2
)= 0. This also holds for the point part of ρα. So for every

interval I ⊂ [a, b] the spectral averaging formula (see e.g. [6]) becomes

0< |F 2 ∩ I |=
∫ π

0
ρα(F 2 ∩ I )dα =

∫ π

0
ρsc

α (F 2 ∩ I )dα

This implies ρsc
α

(
F 2 ∩ I

)
>0 for a set of α positive measure.

Remark 1. Using [4] we get the following condition to have singular continuous
spectrum for a set of boundary conditions of positive measure in (α,β)

β −α >π |
0 ∩ I |= |(F 2)c ∩ I |

where I =
(

1
4 , 9

4

)
. Observe that we can control the measure of F 2. For instance, we

can make it as small (positive) as wish, so we get embedded singular continuous
spectrum for many boundary conditions.

Remark 2. We note that the proof of Theorem 1 can be extended to yield more
general results: set F =⋃∞

n=0 Fn where each Fn is a set constructed as described
in Section 2 in the interval [n,n + 1], n = 0,1,2, . . . . Then F and its complement
are essentially dense in [0,∞). Suppose that every Fn satisfies the assumptions of
Lemma 1 with γ >6. Let W(x) be as in (6) and gn,Bn,Ln as in Theorem 1. Then
the half-line Schrödinger operators Hα with potential V (x) given by equations (4),
(5) and (6) satisfy σac (Hα)= σess (Hα)= [0,∞), σp (Hα)∩ (0,∞)=∅ and for every
interval I ⊂ [0,∞) we have σsc (Hα) ∩ I �= ∅ for a set of boundary condition α of
positive measure.
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