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Sasha m’a proposé un sujet de recherche qui m’a immédiatement passionné,
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à cette tâche, l’interêt porté à mon travail et leurs commentaires constructifs et
enthousiastes. Avoir comme rapporteurs deux spécialistes de leur envergure est
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Chapter 1

Introduction

My first works devoted to the spectral theory of Schrödinger operators are quite
far from high dimensional statistics which is the topic of this these. This is
the case for [dRT03, Tch05] prepared during my PhD studies at the National
Autonomous University of Mexico but also for [dRT07], a paper written once
I was recruited as an assistant professor at the same university. These papers
reflect the influence of my PhD adviser Rafael del Rio Castillo.

My first years as an assistant professor were also years of scientific ques-
tioning. It was during this period that I became interested in statistics having
multiples occasions to discuss with colleagues in the department and in the in-
stitute of mathematics. The idea of a new scientific project took shape during
sabbatical year following my son’s birth. I have been very lucky to realize this
project thanks to the very valuable support of Alexandre Tsybakov whose hu-
man and scientific qualities inspire me. It was during the two post-doctoral
years spent with him at CREST that I discovered high-dimensional statistics.
It was also Professor Tsybakov who introduced me to the matrix completion
problem. I was immediately seduced by this topic. A large part of my papers
is devoted to it [Klo11, Klo14, KLMS15, GK17, KLT16, Klo15]. This material
is covered in Chapter 2 of this thesis.

In the matrix completion problem one observes only a small number of entries
of an unknown matrix. Moreover, the entries that one observes can be perturbed
by some noise. From these noisy observations the goal is to recover the unknown
matrix. In general, recovery of a matrix from a small number of observed entries
is impossible, but, if the unknown matrix has low rank, then accurate and even
exact recovery is possible [17, 16, 15].

This problem comes up in many areas including collaborative filtering, multi-
class learning in data analysis, system identification in control, global position-
ing from partial distance information and computer vision, to mention some of
them. For example, in NETFLIX recommendation system one observes movie
ratings. These ratings form a very large matrix where the rows are users and the
columns are movies. Of course each user only rates a small number of movies
comparing to the hole NETFIX’s offer. The goal of a recommendation system
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8 CHAPTER 1. INTRODUCTION

is to predict missing ratings in order to recommend to each user the movies that
he or she might like.

The most popular methods of inference of low-rank matrices are based on
minimization of the empirical risk penalized by the nuclear norm with various
modifications, see, for example, [17, 33, 48, 51, 38, 45, 29]. In my first paper
on this topic [Klo11] I show that in some settings when the observed entries
are uniformly distributed it is possible to penalize directly by the rank. An
important characteristic of the estimator that I propose in [Klo11] is that it can
be computed exactly.

Most of the existing methods of matrix completion rely on the knowledge or
a pre-estimation of the standard deviation of the noise. In [GK17] and [Klo14]
we propose a new method called

√
matrix lasso for approximate low-rank ma-

trix recovery which does not rely on the knowledge or on an estimation of the
standard deviation of the noise. This method is inspired by the square-root
lasso introduced by Belloni, Chernozhukov and Wang [3] for the vector regres-
sion model. We consider two particular settings: matrix completion and matrix
regression. In [GK17] jointly with Stéphane Gäıffas we provide empirical re-
sults that confirms our theoretical findings and illustrate the fact that using
the Frobenius norm instead of the square Frobenius norm as a goodness-of-fit
criterion makes the optimal smoothing parameter λ independent of the noise
level, allowing for a better stability of the procedure with respect to the noise
level, as compared to other state-of-the-art procedures.

Typically, in the matrix completion literature, the sampling scheme is sup-
posed to be uniform. However, in practice, the observed entries are not guar-
anteed to follow the uniform scheme and its distribution is not known exactly.
With this motivation in mind, in [Klo14] I study the restricted nuclear norm
penalized estimator under quite general sampling distributions. An important
feature of my estimator is that its construction requires only an upper bound on
the maximum absolute value of the entries of the unknown matrix. This con-
dition is very mild. A bound on the maximum of the elements is often known
in applications. For instance, if the entries of the unknown matrix are some
user’s ratings it corresponds to the maximal rating. Most of the previous works
on matrix completion require more involved conditions on the unknown matrix,
for example, the incoherence condition which involves singular vectors of the
unknown matrix (see e.g. [14, 37]) or an upper bound on the ”spikiness index”
(i.e. the quotient of Frobenius and sup norms) as in [45].

In 2012 I was hired as assistant professor at the University Paris Ouest
Nanterre la Défense in the Modal’X laboratory. Since my arrival, I have had
unfailing support from the laboratory which allowed me to further develop my
research. Within Modal’X I continue working on matrix completion problem
being especially interested in some questions raised by matrix completion’s ap-
plications.

First, jointly with Jean Lafond, Éric Moulines and Joseph Salmon [KLMS15],
we consider a statistical model where instead of observing a real-valued entry
of an unknown matrix we are now able to see only highly quantized outputs.
These discrete observations are generated according to a probability distribution
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which is parametrized by the corresponding entry of the unknown low-rank
matrix. The problem of matrix completion over a finite alphabet has received
much less attention than the traditional unquantized matrix completion. This
model is well suited for the analysis of voting patterns, preference ratings, or
recovery of incomplete survey data, where typical survey responses are of the
form “true/false”, “yes/no” or “agree/disagree/no opinion” for instance.

Second, jointly with Karim Lounici and Alexandre Tsybakov, in [KLT16] we
study robustness to corruptions of matrix completion procedure. It has been
shown empirically that uncontrolled and potentially adversarial gross errors that
might affect only a few observations are particularly harmful. For example, Xu
et al [58] showed that a very popular matrix completion procedure using nuclear
norm minimization can fail dramatically even if only a single column has been
corrupted. It is particularly relevant in applications to recommendation systems
where malicious users try to manipulate the prediction of matrix completion
algorithms by introducing spurious perturbations.

A quite popular direction in the matrix completion literature are the thresh-
olding methods which can be divided in two groups: one-step thresholding meth-
ods and iterative thresholding methods. Strong theoretical guarantees were ob-
tained for one-step thresholding procedures (see, for example, [38, 20], [Klo11]).
Despite these strong theoretical guarantees, these one-step thresholding meth-
ods have two important drawbacks: they show poor behavior in practice and
only work under the uniform sampling distribution which is not realistic in many
practical situations.

Much better practical performances have been shown by iterative threshold-
ing methods as, for example, SoftImpute introduced in [44]. These iterative
thresholding algorithms are simple to implement, scale to relatively large matri-
ces and achieve competitive errors compared to the state-of-the-art algorithms.
In spite of their empirical success, the theoretical guarantees of such iterative
thresholding methods are poorly understood. In [Klo15] I provide strong theo-
retical guarantees, similar to those obtained for nuclear-norm penalization meth-
ods and one step thresholding methods for a modification of the softImpute

algorithm. The results of [Klo15] also answer an important theoretical question:
what is the exact minimax rate of convergence for matrix completion problem
which has only been known up to a log factor [38].

My meeting with Marianna Pensky leads to two papers on the Varying Coef-
ficient Model [KP13, KP15]. Chapter 3 is dedicated to this topic. The Varying
Coefficient Model (VCM) is getting more and more popular in data analysis and
has applications in economics, epidemiology, ecology, etc. It provides a more
flexible approach than the classical linear regression model and is often used to
analyze the data measured repeatedly over time. VCM introduced by Hastie
and Tibshirani [34] allows the unknown parameter vector f to depend on the
variable t:

Y = WT f(t) + σξ.

Here, f(·) = (f1(·), . . . , fp(·))T is an unknown vector-valued function of regres-
sion coefficients. In the applications t represents some characteristics of the
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system such as age or time in epidemiological studies.

In [KP13] we propose a novel estimation procedure for f which is based on
recent developments in low-rank matrix estimation. To the best of my knowl-
edge, [KP13] is the first non-asymptotic study of VCM. This work lead us to
the question of the minimax optimal rates of convergence for this model. We
answer this question in [KP15] in the case of sparse high-dimensional Vary-
ing Coefficient Model where we introduce a new estimator called ”block lasso”.
This procedure has the advantage of being completely adaptive to sparsity, to
heterogeneity of the time dependent covariates and to their possibly spatial
inhomogeneous nature.

More recently I have been interested in network models [KTV16]. I present
this work in Chapter 4. Networks arise in many areas such as information
technology, social life, genetics. They can be studied as graphs, and random
graphs analysis has become crucial in order to understand the features of these
systems. The main graph integral characteristics are the number of vertices
n and the number of edges |E|. The relation between these two parameters
determines whether a graph is sparse or dense. Most real life networks are
sparse and, in general, sparse graphs are more difficult to handle than the dense
ones and difficulties increase as the graph get sparser.

In [KTV16] jointly with Alexandre Tsybakov and Nicolas Verzelen we con-
sider a network defined as an undirected simple graph with n nodes. We study
the problem of the statistical estimation of the matrix of connection probabili-
ties based on the observations of the adjacency matrix of the network and derive
optimal rates of estimation for this problem in the important setting of sparse
networks. The results obtained in [KTV16] also yield bounds on the minimax
risks for graphon estimation in the L2 norm when the probability matrix is sam-
pled according to the graphon model. Our results shed light on the differences
between estimation under the empirical loss (the probability matrix estimation)
and under the integrated loss (the graphon estimation).

The aim of the present memoir is to give an accessible overview of the
main results found in the papers described above. Rather than emphasizing
technical aspects of the papers we try to explain the results in simple words,
put them in context and explain how they relate to the existing literature.
All the technical details can be found in the papers available on my website :
http://kloppolga.perso.math.cnrs.fr/publi.html .

1.1 Notation

We provide a brief summary of the notation. Let A,B be matrices in Rm1×m2 .

• For any set I, |I| denotes its cardinal and Ī its complement. Let a ∨ b =
max(a, b) and a ∧ b = min(a, b).

• For a matrix A, Aij is its (i, j)th entry.
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• For two matrices A,B ∈ Rm1×m2 we define the scalar product

〈A,B〉 = tr(ATB).

• We denote by ‖A‖2 the usual l2−norm. Additionally, we use the following
matrix norms: ‖A‖∗ is the nuclear norm (the sum of singular values),
‖A‖ is the operator norm (the largest singular value), ‖A‖∞ is the largest
absolute value of the entries:

‖A‖∞ = max
i,j
| Aij | .

• ‖A‖2,1 is the sum of l2 norms of the columns of A and ‖A‖2,∞ is the
largest l2 norm of the columns of A:

‖A‖2,1 =

m2∑
k=1

‖Ak‖2 and ‖A‖2,∞ = max
1≤k≤m2

‖Ak‖2.

• The singular value decomposition (SVD) of a matrix A:

A =
rankA

Σ
j=1

σj(A)uj(A)vj(A)T , (1.1)

where

– σj(A) are the singular values of A indexed in the decreasing order,

– uj(A) (resp. vj(A)) are the left (resp. right) singular vectors of A.

• We denote by Sλ(W ) ≡ UDλV
′ the soft-thresholding operator where

Dλ = diag [(d1 − λ)+, . . . , (dr − λ)+], UDV ′ is the SVD of W , D =
diag [d1, . . . , dr] and t+ = max(t, 0).

• Let M = max(m1,m2), m = min(m1,m2) and d = m1 +m2.

• We set Nm1×m2 = {(i, j) : 1 ≤ i ≤ m1, 1 ≤ j ≤ m2}.

• For any vector η ∈ Rp, we denote the standard l1 and l2 vector norms by
‖η‖1 and ‖η‖2, respectively.

• ‖·‖L2(dµ) and 〈· , ·〉L2(dµ) are the norm and the scalar product in the space

L2 ((0, 1), dµ).

• We denote by Rk×ksym the class of all symmetric k × k matrices with real-
valued entries.

• The symbol . means that the inequality holds up to a multiplicative
numerical constant and we denote by C positive constant that can vary
from line to line.
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Chapter 2

Matrix Completion

In recent years, there has been a considerable interest in statistical inference for
high-dimensional matrices. One particular problem is matrix completion where
one observes only a small number n� m1m2 of the entries of a high-dimensional
m1 × m2 matrix A0 of rank r; it aims at inferring the missing entries. The
problem of matrix completion comes up in many areas including collaborative
filtering, multi-class learning in data analysis, system identification in control,
global positioning from partial distance information and computer vision, to
mention some of them. For instance, in computer vision, this problem arises
as many pixels may be missing in digital images. In collaborative filtering,
one wants to make automatic predictions about the preferences of a user by
collecting information from many users. So, we have a data matrix where rows
are users and columns are items. For each user, we have a partial list of his
preferences. We would like to predict the missing ones in order to be able to
recommend items that he may be interested in.

In general, recovery of a matrix from a small number of observed entries is
impossible, but, if the unknown matrix has low rank, then accurate and even
exact recovery is possible. In the noiseless setting, [17, 16, 15] established the
following remarkable result: assuming that it satisfies some low coherence con-
dition, A0 can be recovered exactly by constrained nuclear norm minimization
with high probability from only n & r(m1 ∨m2) log2(m1 ∨m2) entries observed
uniformly at random.

What makes low-rank matrices special is that they depend on a number of
free parameters that is much smaller than the total number of entries. Taking
the singular value decomposition of a matrix A ∈ Rm1×m2 of rank r, it is easy
to see that A depends upon (m1 +m2)r − r2 free parameters. This number of
free parameters gives us a lower bound for the number of observations needed
to complete the matrix.

A situation, common in applications, corresponds to the noisy setting in
which the few available entries are corrupted by noise. Here we observe a rela-
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tively small number of entries of a data matrix

Y = A0 + E

where A0 = (aij) ∈ Rm1×m2 is the unknown matrix of interest and E = (εij) ∈
Rm1×m2 is the matrix containing the noise. Noisy matrix completion has been
extensively studied recently (e.g., [38, 46, 12, 20]).

2.1 Trace regression and Bernoulli model

Two statistical models have been proposed in the noisy matrix completion lit-
erature: the trace regression model (e.g., [38, 46, 12],[Klo14]) and the Bernoulli
model (e.g., [20],[Klo15]). In the trace regression model we observe couples
(Xi, Yi) satisfying the following relation

Yi = tr(XT
i A0) + σεi, i = 1, . . . , n. (2.1)

Here Yi ∈ R, Xi ∈ Rm1×m2 are the design matrices, A0 ∈ Rm1×m2 is the
unknown matrix of interest and εi are the noise variables. We assume that
E(εi) = 0 and E(ε2

i ) = 1. Unless stated otherwise, we suppose that the noise
variables are independent and sub-exponential, i.e., satisfy the following assump-
tion:

Assumption 1. there exists a positive constant K such that

max
i=1,...,n

E exp (|εi|/K) <∞.

The trace regression model (2.1) is a quite general model which contains as
particular cases a number of interesting problems. For matrix completion, the
design matrices Xi are i.i.d copies of a random matrix X ∈ Rm1×m2 having
distribution Π on the set

X =
{
ej(m1)eTk (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}
.

Here el(m) are the canonical basis vectors in Rm. In this model, Yi gives us the
noisy value of the observed entry and Xi gives its position. Then, the problem
of estimating A0 coincides with the problem of matrix completion with random
sampling distribution Π. One of the particular settings of this problem is the
Uniform Sampling at Random (USR) matrix completion which corresponds to
Π being the uniform distribution .

In the Bernoulli model we suppose that each entry (i, j) ∈ [m1] × [m2] is
observed independently of the other entries with probability πij . Let ηij be the
independent Bernoulli variables with parameters πij and yij = ηij (aij + εij).
Then, Y = (yij) is the matrix containing our observations. We denote by Ω
the random set of observed indices. In a simpler case, the random subset of
observed entries is chosen uniformly at random that is, each entry is observed
with the same probability p.
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Note that in the trace regression model each entry can be sampled multiple
times while in the Bernoulli model each entry can be sampled only once. Another
difference is that in the trace regression model the number of observations n is
fixed while in the Bernoulli model the number of observations |Ω| is random.
In spite of these differences, the results on the minimax optimal estimation
obtained for these two models are very similar.

2.2 Rank penalized estimator

The most popular methods of inference of low-rank matrices are based on mini-
mization of the empirical risk penalized by the nuclear norm with various modi-
fications, see, for example, [33, 48, 51, 38, 45, 29]. It is interesting to note that
in some settings it is possible to penalize directly by the rank. In [Klo11] I
propose a new estimator based on the penalization by the rank and the use of
the knowledge of the distribution of the design matrices.

We consider the noisy matrix completion setting. Suppose that we observe
n independent random pairs (Xi, Yi) satisfying the trace regression model (2.1).
We assume that the sampling distribution Π is uniform, that is, we suppose that
each entry is sampled with the same probability equal to (m1m2)−1. In [Klo11]
I introduce the following rank-penalized estimator of A0:

Â = arg min
A∈Rm1×m2

{
‖ A−X ‖22 +λ rank(A)

}
, (2.2)

where

X =
m1m2

n

n∑
i=1

YiXi.

The optimization problem (2.2) may equivalently be written as

Â = arg min
k

[
arg min

A∈Rm1×m2 , rank(A)=k

‖ A−X ‖22 +λk

]
.

Here, the inner minimization problem is to compute the restricted rank estima-
tors Âk that minimizes the norm ‖ A −X ‖22 over all matrices of rank k. One
can write:

Âk =
k

Σ
j=1

σj(X)uj(X)vj(X)T (2.3)

where X =
rank X

Σ
j=1

σj(X)uj(X)vj(X)T is the singular value decomposition (SVD)

of X. Using (2.3), we easily see that Â has the form

Â = Σ
j:σj(X)≥

√
λ
σj(X)uj(X)vj(X)T .

Thus, the computation of Â reduces to a simple hard thresholding of singular
values in the SVD of X. In [Klo11] I prove the following upper bounds for the
estimation error of (2.2) measured in Frobenius and in spectral norms:
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Theorem 2. Assume that ‖A0‖∞ ≤ a for some constant a and that Assump-
tions 1 is satisfied. Let n > m log3(m), logm ≥ 5 and
√
λ = C (σ ∨ a)

√
log(m)(m1 ∨m2)

n
. Then, with probability at least 1 − 3/d,

one has

(i)
‖ Â−A0 ‖2√

m1m2
≤ C (σ ∨ a)

√
(m1 ∨m2) r log(m)

n
, and

(ii)
∥∥∥Â−A0

∥∥∥ ≤ C (σ ∨ a)

√
m1m2 (m1 ∨m2) log(m)

n
.

These upper bounds in particular imply that the rank penalized estimator
(2.2) is minimax optimal (up to a log factor) both in Frobenius and in spectral
norm. This optimality holds for the class of matrices A(r, a) defined as follows:
for given positive r and a, A0 belongs A(r, a) if and only if the rank of A0 is
not larger than r and all the entries of A0 are bounded in absolute value by a.
I also prove that rank(Â) ≤ rank(A0).

2.3 Noisy low-rank matrix completion with gen-
eral sampling distribution

Typically, in the matrix completion literature, the sampling scheme is supposed
to be uniform. However, in practice, the observed entries are not guaranteed
to follow the uniform scheme and its distribution is not known exactly. For
example, in a collaborative filtering setting such as Netflix, where rows of the
matrix represent users and columns represent movies, uniform sampling corre-
sponds to assuming all users are equally likely to rate movies and all movies
are equally likely to be rated. This assumption is not realistic as some users
are much more active than others and some movies are much more popular
while others are much less likely to be rated. With this motivation in mind,
in [Klo14] I study restricted nuclear norm penalized estimator under general
sampling distributions.

Sampling schemes more general than the uniform one were previously con-
sidered in [45, 30] where the authors consider penalization using a weighted
trace-norm. The weighted trace-norm, used in [45, 30], corrects a specific sit-
uation where the standard trace-norm fails. This situation corresponds to a
non-uniform distribution where the row/column marginal distribution is such
that some columns or rows are sampled with very high probability.

Negahban et al in [45] assumed that the sampling distribution is a product
distribution, i.e. the row index and the column index of the observed entries
are selected independently. A product distribution assumption does not seem
realistic in many cases - e.g. for the Netfix data, it would indicate that all
users have the same (conditional) distribution over which movies they rate. An
important advantage of the method proposed in [Klo14] is that the sampling
distribution does not need to be a product distribution.
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Foygel et al in [30] propose a method based on the “smoothing” of the sam-
pling distribution. This procedure may be applied to an arbitrary sampling dis-
tribution but requires a priori information on the rank of the unknown matrix.
For general sampling distributions the prediction performances of the estima-
tor proposed in [30] are evaluated through bounded l-Lipschitz loss whereas in
[Klo14] the estimation error is measured in Frobenius norm. In addition, I show
that estimator proposed in [Klo14] is minimax optimal (up to a logarithmic
factor).

Assume that we observe n independent random pairs (Xi, Yi) satisfying the
trace regression model (2.1). Let πjk = P

(
X = ej(m1)eTk (m2)

)
be the probabil-

ity to observe the (j, k)-th entry. We denote by Ck =
m1

Σ
j=1

πjk the probability to

observe an element from the k-th column and by Rj =
m2

Σ
k=1

πjk the probability

to observe an element from the j-th row. As, unlike [45, 30], in [Klo14] I use
the standard trace-norm penalization we need the following assumption on the
sampling distribution which guarantees that no row or column is sampled with
very high probability:

Assumption 3. There exists a positive constant ν ≥ 1 such that

max
i,j

(Ci, Rj) ≤ ν/min(m1,m2).

Note that we can easily get an estimation on this upper bound using the
empirical frequencies. In order to get bounds in the Frobenius norm, we addi-
tionally suppose that each element is sampled with positive probability:

Assumption 4. There exists a positive constant µ ≥ 1 such that

πjk ≥ (µm1m2)−1.

In the case of uniform distribution we have that ν = µ = 1. In [Klo14] I
define the following estimator of A0:

Â = arg min
‖A‖∞≤a

{
1

n

n∑
i=1

(Yi − 〈Xi, A〉)2
+ λ‖A‖∗

}
, (2.4)

where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞.
This is a restricted version of the matrix lasso estimator which is based on a
trade-off between fitting the target matrix to the data using least squares and
minimizing the nuclear norm.

An important feature of our estimator is that its construction requires only
an upper bound on the maximum absolute value of the entries of A0. This con-
dition is very mild. A bound on the maximum of the elements is often known in
applications. For instance, if the entries of A0 are some users ratings it corre-
sponds to the maximal rating. Most of the previous works on matrix completion
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require more involved conditions on the unknown matrix, for example, the in-
coherence condition (see e.g. [14, 37]) or an upper bound on αsp, the ”spikiness

index” of the unknown matrix : αsp =

√
m1m2 ‖A0‖∞
‖A0‖2

(see [45]).

The main result of [Klo14] shows the following bound on the normalized
Frobenius error of the estimators Â (2.4):

Theorem 5. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 4 and 3. Assume that ‖A0‖∞ ≤ a for some constant a and that Assumption
1 holds. Then, with an optimal choice of λ, one has

‖Â−A0‖22
m1m2

. (σ2 ∨ a2)µ2 ν
log(d)(m1 ∨m2)rank(A0)

n
(2.5)

with probability greater than 1 − 3/d. The symbol . means that the inequality
holds up to a multiplicative numerical constant.

The optimal choice of λ in (2.4) is the following one:

λ = 3C∗σ

√
2ν log(d)

mn
. (2.6)

where C∗ is an absolute numerical constant which depends only on K. If εi are
N(0, 1), then we can take C∗ = 6.5.

Theorem 5 guarantees, that the prediction error of our estimator is small
whenever n & log(m1 ∨m2)(m1 ∨m2)rank(A0). This quantifies the sample size
necessary for successful matrix completion. Note that, when rank(A0) is small,
this is considerably smaller than m1m2, the total number of entries. For large
m1,m2 and small r, this is also quite close to the degree of freedom of a rank r
matrix, which is (m1 +m2)r − r2.

2.4 High dimensional matrix estimation with un-
known variance of the noise

Most of the existing methods of matrix completion rely on the knowledge or a
pre-estimation of the standard deviation of the noise. In [GK17] and [Klo14]
we consider the problem of high-dimensional matrix estimation from noisy ob-
servations with unknown variance of the noise. We propose a new method for
approximate low-rank matrix recovery which does not rely on the knowledge or
on an estimation of the standard deviation of the noise.

Usually, the variance of the noise is involved in the choice of the regula-
rization parameter (see, e.g., (2.6)). The main idea is to use the Frobenius norm
instead of the squared Frobenius norm as a goodness-of-fit criterion. Roughly,
the idea is that in the KKT condition, the gradient of this square-rooted criterion
is the regression score, which is pivotal with respect to the noise level, so that
the theoretically optimal smoothing parameter does not depend on the noise
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level anymore. This cute idea for dealing with an unknown noise level was first
introduced for square-root lasso by Belloni, Chernozhukov and Wang [3] for the
vector regression model. We consider two particular settings: matrix completion
and matrix regression.

2.4.1 Square-root estimator for Matrix Completion

In [Klo14] I propose a new estimator for the matrix completion problem in the
case when the variance of the noise σ is unknown. Assume that we observe n
independent random pairs (Xi, Yi) satisfying the trace regression model (2.1)
and define the following estimator of A0:

ÂSQ = arg min
‖A‖∞≤a


√√√√ 1

n

n∑
i=1

(Yi − 〈Xi, A〉)2
+ λ‖A‖∗

 , (2.7)

where λ > 0 is a regularization parameter and a is an upper bound on ‖A0‖∞.
Note that the first term of this estimator is the square root of the data-dependent
term of the restricted matrix lasso estimator (2.4). This is similar to the princi-
ple used to define the square-root lasso estimator for the usual vector regression
model. We consider the case of sub-Gaussian noise:

Assumption 6. There exists a constant K such that

E [exp(tεi)] ≤ exp
(
t2/2K

)
for all t > 0.

Note that condition Eε2
i = 1 implies that K ≤ 1. We can take λ in (2.7) in

the following way:

λ = 6C∗

√
2ν log(m1 +m2)

(m1 ∧m2)n
(2.8)

where C∗ is an absolute numerical constant and ν is defined in Assumption 3.
If εi are N(0, 1), then we can take C∗ = 6.5. Here λ does not depend on σ. We
consider n large enough, more precisely, n such that

n & µν(m1 ∨m2)rank(A0) log(d) (2.9)

and obtain the following theorem:

Theorem 7. Let Xi be i.i.d. with distribution Π on X which satisfies Assump-
tion 3 and 4. Assume that ‖A0‖∞ ≤ a for some constant a and that Assumption
6 holds. Consider a regularization parameter λ satisfying (2.8) and n satisfying
(2.9). Then, with probability greater than 1− 3/d− 2 exp{−c3n},

‖ÂSQ −A0‖22
m1m2

. (σ2 ∨ a2)µ2 ν
log(d)rank(A0)(m1 ∨m2)

n
. (2.10)

The symbol . means that the inequality holds up to a multiplicative numerical
constant.
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Note that condition (2.9) is not restrictive: indeed the sampling sizes n
satisfying condition (2.9) are of the same order of magnitude as those for which
the normalized Frobenius error of our estimator is small. Thus, Theorem 7
shows that ÂSQ has the same prediction performances as previously proposed
estimators which rely on the knowledge of the standard deviation of the noise. In
particular ÂSQ is minimax optimal up to a logarithmic factor. This optimality
holds for the class of matrices A(r, a) defined as follows: for given r and a, A0

belongs to A(r, a) if and only if the rank of A0 is not larger than r and all
the entries of A0 are bounded in absolute value by a. Note also that the lower
bound obtained in [38] contains the minimum of σ2 and a2 whereas in (2.10) we
have the maximum, so, in a particular setting when σ ∧ a→ 0, the dependency
on these two parameters given by (2.10) probably is not optimal.

2.4.2 Square-root estimator for Matrix Regression

In [GK17], jointly with Stéphane Gäıffas, we apply the idea of square root
estimator to the matrix regression. The matrix regression model is given by

Ui = ViA0 + Ei i = 1, . . . , n

where Ui are 1 × m2 vectors of response variables, Vi are 1 × m1 vectors of
predictors, A0 is an unknown m1 ×m2 matrix of regression coefficients of rank
r and Ei are random 1×m2 vectors of noise with independent entries and mean

zero. Set V =
(
V T1 , . . . , V

T
n

)T
, U =

(
UT1 , . . . , U

T
n

)T
.

In [GK17] we propose a new square-root type estimator of A0:

Â = arg min
A∈Rm1×m2

{‖U − V A‖2 + λ‖V A‖∗} ,

where λ > 0 is a regularization parameter. This estimator can be formulated as
a solution to a conic programming problem and we prove the following upper
bound on the estimation error of Â:

Theorem 8. Assume that εij are independent N(0, 1) and (2.12) is satisfied.
Then, for an optimal choice of λ, we have that∥∥∥V (Â−A0

)∥∥∥2

2
. σ2(m2 + v) rank(V A0)

with probability at least 1− 2 exp {−c(m2 + v)}. Here v = rank(V ).

To the best of my knowledge, it is an interesting open problem whether
or not the upper bound given by Theorem 8 is optimal. Previously matrix
regression with unknown noise variance was considered in [8, 32]. These two
papers study rank-penalized estimators. Bunea et al [8] proposed an unbiased
estimator of σ which required an assumption on the dimensions of the problem.
This assumption excludes an interesting case when the sample size is smaller
than the number of covariates; our method can be applied to this case.
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The method proposed in [32] can be applied to this last case under the
following condition on the rank of the unknown matrix A0:

rank(A0) ≤ C1(nm2 − 1)

C2

(√
m2 +

√
rank(V )

)2 (2.11)

with some constants C1 < 1 and C2 > 1. In [GK17] we also use a condition
similar to (2.11):

rank(V A0) ≤ C1(nm2 − 1)

C2

(√
m2 +

√
rank(V )

)2 . (2.12)

Note that, as rank(V A0) ≤ rank(A0)∧ rank(V ), condition (2.12) is weaker than
(2.11).

In [GK17] we also provide empirical results that confirm our theoretical find-
ings and illustrate the fact that using the Frobenius norm instead of the square
Frobenius norm as a goodness-of-fit criterion makes the optimal smoothing pa-
rameter λ independent of the noise level, allowing for a better stability of the
procedure with respect to the noise level, as compared to other state-of-the-art
procedures.

2.5 One-bit matrix completion

In [KLMS15] jointly with Jean Lafond, Éric Moulines and Joseph Salmon we
consider a statistical model where instead of observing a real-valued entry of an
unknown matrix we are now able to see only highly quantized outputs. These
discrete observations are generated according to a probability distribution which
is parametrized by the corresponding entry of the unknown low-rank matrix.

The problem of matrix completion over a finite alphabet has received much
less attention than the traditional unquantized matrix completion. This model
is well suited for the analysis of voting patterns, preference ratings, or recov-
ery of incomplete survey data, where typical survey responses are of the form
“true/false”, “yes/no” or “agree/disagree/no opinion” for instance.

One-bit matrix completion, corresponding to the case of binary, i.e. yes/no,
observations, was introduced by [23] where the first theoretical guarantees on
the performance of a nuclear-norm constrained maximum likelihood estimator
are given. The sampling model considered in [23] assumes that the entries are
sampled uniformly at random. Unfortunately, this condition is unrealistic for
recommender system applications: in such a context some users are more active
than others and popular items are rated more frequently. Another important
issue is that the method of [23] requires the knowledge of an upper bound on
the nuclear norm or on the rank of the unknown matrix. Such information is
usually not available in applications.

One-bit matrix completion was further considered by [10] where a max-norm
constrained maximum likelihood estimate is proposed. This method allows more
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general non-uniform sampling schemes but still requires an upper bound on the
max-norm of the unknown matrix. The rates of convergence obtained in [23]
and [10] are slower than the rate of convergence of our estimator.

We consider the maximum likelihood estimator with nuclear-norm penal-
ization. Our method allows us to consider general sampling schemes and only
requires the knowledge of an upper bound on the maximum absolute value of
the entries of the unknown matrix. All the previous works on this model also
required the knowledge of this bound with sometimes the need of additional
(and more difficult to obtain) information on the unknown matrix.

Assume that the observations follow a Bernoulli distribution parametrized
by a matrix X̄ ∈ Rm1×m2 and that an i.i.d. sequence of coefficients (ωi)

n
i=1 ∈

([m1]× [m2])n is revealed. The observations associated to these coefficients are
denoted by (Yi)

n
i=1 ∈ {1, 2}n and distributed as follows

P(Yi = j) = f j(X̄ωi
), j ∈ {1, 2},

where f = (f j)2
j=1 is a 2−link function. For example, taking f1(x) = ex

1+ex and

f2(x) = 1− f1(x) we get the usual logistic regression. Here, the corresponding
entries of X̄ represent the log odds of the Bernoulli distribution that governs
our observations. We have two goals: the first is the recovery of the distribution
of Y given by f(X̄) and, the second, is to accurately recover the matrix X̄ itself.

In order to simplify notation, we write X̄i instead of X̄ωi
. Denote by ΦY the

(normalized) negative log-likelihood of the observations:

ΦY(X) = − 1

n

n∑
i=1

 2∑
j=1

1{Yi=j} log
(
f j(X̄i)

) .

Let γ > 0 be an upper bound of ‖X̄‖∞. In [KLMS15] we introduce the following
estimator of X̄:

X̂ = arg min
X∈Rm1×m2 ,‖X‖∞≤γ

ΦλY (X), where ΦλY (X) = ΦY(X) + λ‖X‖∗,

with λ > 0 being a regularization parameter. We need the following assumptions
which allows us to control the ”steepness” and ”flatness” of f :

Assumption 9. We assume that the functions x 7→ − log(f j(x)), j = 1, 2 are
convex. In addition, we suppose that there exist positive constants Hγ , Lγ and
Kγ such that:

Hγ ≥2 sup
|x|≤γ

(| log(f1(x))| ∨ | log(f2(x))|), (2.13)

Lγ ≥max

(
sup
|x|≤γ

|(f1)′(x)|
f1(x)

, sup
|x|≤γ

|(f2)′(x)|
f2(x)

)
, (2.14)

Kγ = inf
|x|≤γ

g(x), where g(x) =
(f1)′(x)2

8f1(x)(1− f1(x))
. (2.15)
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This assumption is quite mild. It includes, for example, the logistic regres-
sion (with f1(x) = ex

1+ex ) and the probit model (with f1(x) = Φ(x/σ) where Φ
is the cumulative distribution function of a standard Gaussian).

For this estimator we establish upper bounds both on the Frobenius norm
between the unknown true matrix and the proposed estimator and on the as-
sociated Kullback-Leibler divergence. The former is addressed by Theorem 10
which provides an upper bound on the KL divergence between f(X̄) and f(X̂),
the latter is tackled by Corollary 11, which bounds the Frobenius norm of X̄
estimation error.

Theorem 10. Let Assumptions 3, 4 and 9 be satisfied. Suppose that ‖X̄‖∞ ≤ γ,
n ≥ 2m log(d)/(9ν) and take

λ = 6Lγ

√
2ν log(d)

mn
.

Then, with probability at least 1−3d−1 the Kullback-Leibler divergence is bounded
by

KL
(
f(X̄), f(X̂)

)
≤ µmax

(
c̄µν

L2
γrank(X̄)

Kγ

(m1 ∨m2) log(d)

n
, eHγ

√
log(d)

n

)
,

with c̄ a universal constant whose value is specified in the proof.

This result immediately gives an upper bound on the estimation error of X̂,
measured in Frobenius norm:

Corollary 11. Under the assumptions of Theorem 10, we have that, with prob-
ability at least 1− 3d−1,

‖X̄ − X̂‖22
m1m2

≤ µmax

(
c̄µν

L2
γrank(X̄)

K2
γ

(m1 ∨m2) log(d)

n
,
Hγ

Kγ

√
log(d)

n

)
.

We also establish lower bounds, showing that our upper bounds are minimax
optimal up to logarithmic factors. Another contribution of [KLMS15] is an
extension of one-bit matrix completion to the case of a more general finite
alphabet. We also present an implementation based on the lifted coordinate
descent algorithm introduced in [27] and Monte Carlo experiments supporting
our claims.

2.6 Matrix completion by singular value thresh-
olding: minimax optimal bounds.

Quite popular tool in the matrix completion literature are the thresholding
methods which can be divided in two groups: one-step thresholding methods
and iterative thresholding methods. Strong theoretical guarantees were obtained
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for one-step thresholding procedures. For example, Koltchinskii et al in [38]
introduce a soft-thresholding method and show that it is minimax optimal up
to a logarithmic factor. In [Klo11] I consider a hard thresholding proceedure.
In [20] Chatterjee proposes an universal singular value thresholding that can
be applied to a large number of matrix estimation problems, including matrix
completion. Despite strong theoretical guarantees, these one-step thresholding
methods have two important drawbacks: they show poor behavior in practice
and only work under the uniform sampling distribution which is not realistic in
many practical situations.

Much better practical performances have been shown by iterative thresh-
olding methods (see, e.g., [9, 44, 24]). For example, in [9], Cai et al propose
a first-order singular value thresholding algorithm SVT which approximately
solves the nuclear norm minimization problem. In [44], Mazmuder et al intro-
duce softImpute algorithm. SoftImpute produces a sequence of solutions that
converges to a solution of the nuclear norm regularized least-squares problem
when the number of iterations goes to infinity. More recently Dhanjal et al
[24] propose an improvement for the softImpute algorithm using randomized
SVDs along with a novel updating method. This improvement allows to bypass
the bottleneck in the algorithm which consists in the use of the singular value
decomposition of a large matrix at each iteration.

These iterative thresholding algorithms are simple to implement, scale to
relatively large matrices and achieve competitive errors compared to the state-
of-the-art algorithms. On the other hand, the majority of existing algorithms
for matrix completion consists of batch methods, that is, they operate on the
full data matrix. However, in some applications, such as recommendation sys-
tems or localization in sensor networks, we observe a sequence of data matrix
M1, . . . ,MT revealed sequentially where from Mt to Mt+1 we add new obser-
vations. In such situations the predictive rule should be refined incrementally.
One advantage of iterative thresholding algorithms is that they can be adapted
to such sequential learning, see, for example, [24].

In spite of their empirical success, the theoretical guarantees of such itera-
tive thresholding methods are poorly understood. In [Klo15] I provide strong
theoretical guarantees, similar to those obtained for nuclear-norm penalization
methods (see, for example, [46], [Klo14]) and one step thresholding methods
(see [38, 20], [Klo11]) for a modification of the softImpute algorithm.

2.6.1 Algorithm

In [Klo15] I consider the Bernoulli model introduced in 2.1. We assume that
the noise variables εij are independent, zero mean and bounded:

Assumption 12. E(εij) = 0, E(ε2
ij) = σ2 and there exists a positive constant

b > 0 such that
max
i,j
|εij | ≤ b.

Our algorithm is based on the softImpute algorithm proposed by Mazumder
et al [44] which is inspired by SVD-Impute of Troyanskaya et al [53]. It alternates
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between imputing the missing values from a current SVD, and updating the SVD
using the data matrix.

Algorithm 1

Require : Matrix Y , regularization parameter λ and a, an upper bound on
the sup-norm of A0.

1. Aold = 0

2. (a) Repeat

(i) Compute Anew ← Sλ
(
Y + (Aold)Ω̄

)
.

(ii) If
∥∥(Anew −Aold)

Ω̄

∥∥ < λ/3 and
∥∥Anew −Aold∥∥∞ < a exit.

(iii) Put Aold =
(
Aoldij

)

Aoldij =


Anewij if |Anewij | ≤ a

a if Anewij > a

−a if Anewij < −a.

(b) Assign Â← Anew.

3. Output Â.

This algorithm repeatedly replaces the missing entries with the current guess,
update the guess by solving

Anew ∈ minimize
A

fλ(A) =
1

2
‖Y + (Aold)Ω̄ −A‖22 + λ‖A‖∗

and truncating Anew. In [Klo15] I show that this algorithm converges and I
derive an upper bound on the estimation error of Â produced by Algorithm 1
in the case of general sampling schemes. In order to compare this result with
previous results on noisy matrix completion let me consider a more restrictive
assumption on the sampling distribution. That is, I will assume that this dis-
tribution is close to the uniform one:

Assumption 13. There exists positives constants µ1 and µ2 independent on m1

and m2 and a 0 < p < 1 such that for every (i, j) ∈ {1, . . . ,m1} × {1, . . . ,m2}
we have

µ2p ≤ πij ≤ µ1p.
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Under this assumption the results of [Klo15] yield the following upper bound
on the estimation risk of Â produced by Algorithm 1 :

‖Â−A0‖22
m1m2

≤ C(a ∨ b)2 rank(A0)

pm
. (2.16)

This bound holds with high probability and is non-asymptotic. In particular, it
implies that the proposed estimator is minimax optimal in this setting.

Our model was previously considered by Chatterjee [20] in the case of uni-
form sampling distribution. The rate of convergence obtained in [20] is the
following one:

‖Â−A0‖22
m1m2

≤ C

√
rank(A0)

pm
.

which is the square root of the optimal rate (2.16).
In [46, 38], [Klo14] a closely related set up using the trace regression model

was considered. Putting n = pm1m2, we see that, compared to (2.16), bounds
obtained in these papers contain an additional logarithmic factor log(m1 +m2).
Koltchinskii et al in [38] obtained lower bounds for the estimation error with-
out this additional log(m1 + m2) factor. So the results of [Klo15] answer an
important theoretical question that of the exact minimax rate of convergence
for the matrix completion problem. As the lower bound in [38] is obtained for a
different setting, in [Klo15] I adapt their proof to the Bernoulli model and show
that the minimax rate of convergence for matrix completion problem is given by
(2.16) and that the estimator produced by our algorithm is minimax optimal.

2.7 Robust Matrix Completion

Matrix completion problem is motivated by a variety of applications. An im-
portant question in applications is whether or not matrix completion proce-
dures are robust to corruptions. Suppose that we observe noisy entries of
A0 = L0 + S0 where L0 is an unknown low-rank matrix and S0 corresponds
to some gross/malicious corruptions. We assume that S0 has some low com-
plexity structure such as entry-wise sparsity or column-wise sparsity. We wish
to recover L0, but only observe a few entries of A0 and, among those, a fraction
happens to be corrupted by S0. Of course, we do not know which entries are
corrupted.

It has been shown empirically that uncontrolled and potentially adversarial
gross errors that might affect only a few observations are particularly harmful.
For example, Xu et al [58] showed that a very popular matrix completion proce-
dure using nuclear norm minimization can fail dramatically even if S0 contains
only a single nonzero column. It is particularly relevant in applications to rec-
ommendation systems where malicious users try to manipulate the prediction of
matrix completion algorithms by introducing spurious perturbations S0. Hence,
the need for new techniques robust to the presence of corruptions S0.
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With these motivations in mind, in [KLT16] jointly with Karim Lounici and
Alexandre Tsybakov we consider robust matrix completion. Assume that we
observe (Xi, Yi), i = 1, . . . , N satisfying the trace regression model (2.1) and
suppose that the set of observations is the union of two components Ω and
Ω̃ with Ω ∩ Ω̃ = ∅. The sets Ω and Ω̃ are assumed non-random. One of
them, Ω, corresponds to the “non-corrupted” observations of noisy entries of
L0, i.e. observations for which the corresponding entry of S0 is zero. The other
component, Ω̃, corresponds to the observations for which the corresponding
entry of S0 is non vanishing. Given an observation, we do not know if it belongs
to the corrupted or non-corrupted part of observations and we have that |Ω|+
|Ω̃| = N .

A particular case of this setting is the matrix decomposition problem where
N = m1m2, i.e., we observe all entries of A0. Several recent works consider the
matrix decomposition problem, mostly in the noiseless setting, εi ≡ 0. Chan-
drasekaran et al. [19] analyzed the case when the matrix S0 is sparse, with small
number of non-zero entries. They proved that exact recovery of (L0, S0) is possi-
ble with high probability under additional identifiability conditions. This model
was further studied by Hsu et al. [35] who give milder conditions for the exact
recovery of (L0, S0). Also in the noiseless setting, Candes et al. [13] studied
the same model but with positions of corruptions chosen uniformly at random.
Xu et al. [58] studied a model, in which the matrix S0 is columnwise sparse
with sufficiently small number of non-zero columns. Their method guarantees
approximate recovery for the non-corrupted columns of the low-rank compo-
nent L0. Agarwal et al. [2] consider a general model, in which the observations
are noisy realizations of a linear transformation of A0. Their setup includes the
matrix decomposition problem and some other statistical models of interest but
does not cover the matrix completion problem. component L0. Their analysis
includes as particular cases both the entrywise corruptions and the columnwise
corruptions.

The robust matrix completion setting, when N < m1m2, was first considered
by Candes et al. [13] in the noiseless case for entrywise sparse S0. They assumed
that the support of S0 is selected uniformly at random and that N is equal to
0.1m1m2 or to some other fixed fraction of m1m2. Chen et al. [21] considered
also the noiseless case but with columnwise sparse S0. They proved that the
same procedure as in [19] can recover the non-corrupted columns of L0 and
identify the set of indices of the corrupted columns. More recently, Chen et al.
[22] and Li [39] considered noiseless robust matrix completion with entrywise
sparse S0. They proved exact recovery of the low-rank component under an
incoherence condition on L0 and some additional assumptions on the number
of corrupted observations.

To the best of my knowledge, [KLT16] is the first study of robust matrix
completion with noise. Our analysis is general and covers in particular the
cases of columnwise sparse corruptions and entrywise sparse corruptions. It is
important to note that we do not require strong assumptions on the unknown
matrices, such as the incoherence condition, or additional restrictions on the
number of corrupted observations as in the noiseless case. This is due to the
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fact that we do not aim at exact recovery of the unknown matrix. We emphasize
that we do not need to know the rank of L0 nor the sparsity level of S0. We do
not need to observe all entries of A0 either.

Another important point is that our method allows us to consider quite
general and unknown sampling distribution. All the previous works on noiseless
robust matrix completion assume the uniform sampling distribution. However,
in practice the observed entries are not guaranteed to follow the uniform scheme
and the sampling distribution is not exactly known. We also prove the minimax
lower bounds showing that the rates attained by our estimator are minimax
optimal up to a logarithmic factor.

2.7.1 Column-wise sparsity

In the usual matrix completion (S0 = 0) one of the most popular method is
based on constrained nuclear norm minimization. We introduce an additional
norm-based penalty that accounts for corruptions induced by the matrix S0.
This penalty depends on the structure of S0. Suppose first that S0 has at most
s non-zero columns. Then, we use a ‖ · ‖2,1 regularization:

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a

‖S‖∞≤a

{
1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2
+ λ1‖L‖1 + λ2‖S‖2,1

}
(2.17)

where λ1 > 0 and λ2 > 0 are regularization parameters and a is an upper bound
on ‖L0‖∞ and ‖S0‖∞. Our estimator requires an upper bound on the maximum
of the absolute values of the entries of L0 and S0. Such information is often
available in applications; for example, in recommendation systems, this bound
is just the maximum rating.

In the case of column-wise corruptions, we show the following bound on the
normalized Frobenius error of the estimator (L̂, Ŝ) (2.17) of (L0, S0): with high
probability

‖L̂− L0‖22
m1m2

+
‖S0 − Ŝ‖22
m1m2

.
r (m1 ∨m2) + |Ω̃|

|Ω|
+

s

m2
(2.18)

where the symbol . means that the inequality holds up to a logarithmic factor
and a multiplicative constant which may depend only on a and σ. Here, r
denotes the rank of L0, s is the number of corrupted columns, |Ω| and |Ω̃| are
respectively the number of non-corrupted and corrupted observations.

In the upper bound (2.18) we have two terms. The first term, proportional
to r(m1 ∨ m2), also appears in the usual matrix completion see, e.g., (2.16).
The second one is induced by corruptions and is proportional to the number of
corrupted columns s and to the number of corrupted observations, |Ω̃|. This
term is equal to zero if there is no corruption.

Suppose that the number of corrupted columns is small (s � m2). Then,
(2.18) guarantees, that the prediction error of our estimator is small whenever
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the number of non-corrupted observations n satisfies the following condition

n & (m1 ∨m2)rank(L0) + |Ω̃| (2.19)

where |Ω̃| is the number of corrupted observations. This quantifies the sample
size sufficient for successful, robust to corruptions, matrix completion. When
rank(L0) is small and s � m2, the right hand side of (2.19) is considerably
smaller than the total number of entries m1m2.

2.7.2 Element-wise sparsity

We consider now the case when S0 has s non-zero entries but they do not
necessarily lie in a small subset of columns. Here we use a l1 regularization:

(L̂, Ŝ) ∈ arg min
‖L‖∞≤a

‖S‖∞≤a

{
1

N

N∑
i=1

(Yi − 〈Xi, L+ S〉)2
+ λ1‖L‖∗ + λ2‖S‖1

}
. (2.20)

In the case of element-wise corruptions, we show the following bound on the
normalized Frobenius error of the estimator (L̂, Ŝ) (2.20) of (L0, S0): with high
probability

‖L̂− L0‖22
m1m2

+
‖S0 − Ŝ‖22
m1m2

.
r (m1 ∨m2) + |Ω̃|

|Ω|
+

s

m1m2
(2.21)

where the symbol . means that the inequality holds up to a logarithmic factor
and a multiplicative constant. As in the column sparsity case, we observe two
terms in the upper bound (2.21). The first term, proportional to r (m1∨m2)/n,
also appears in the usual matrix completion. The second and the third ones are
induced by corruptions and are proportional to the number of nonzero entries in
S0, s, and to the number of corrupted observations, |Ω̃|. When s� n < m1m2,
this bound implies that one can recover a low-rank matrix from a nearly minimal
number of observations even when a part of these samples has been corrupted.

2.8 Estimation of matrices with row sparsity

In recent years, there has been a great interest for the theory of estimation in
high-dimensional statistical models under different sparsity scenarii. The main
motivation behind sparse estimation is based on the observation that, in several
practical applications, the number of variables is much larger than the number
of observations, but the degree of freedom of the underlying model is relatively
small. One example of such sparse estimation is the problem of estimating of a
sparse regression vector from a set of linear measurements. Another example is
the problem of matrix recovery under the assumption that the unknown matrix
has low rank.

In some recent papers dealing with covariance matrix estimation, a different
notion of sparsity was considered (see, for example, [11], [50]). This notion is
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based on sparsity assumptions on the rows (or columns) Ai· of a matrix A.
One can consider the hard sparsity assumption meaning that each row Ai· of
A contains at most s non-zero elements, or soft sparsity assumption, based on
imposing a certain decay rate on ordered entries of Ai·. These notions of sparsity
can be defined in terms of lq−balls for q ∈ [0, 2):

Bq(s) =

{
v = (vi) ∈ Rm2 :

m2∑
i=1

|vi|q ≤ s

}
(2.22)

where 0 < s <∞ is a given constant. The case q = 0 corresponds to the set of
vectors v with at most s non-zero elements:

B0(s) =

{
v = (vi) ∈ Rm2 :

m2∑
i=1

I(vi 6= 0) ≤ s

}
(2.23)

here I(·) denotes the indicator function and s ≥ 1 is an integer.
In [KT15] jointly with Alexandre Tsybakov, we consider row sparsity setting

in the matrix signal plus noise model. Suppose we have noisy observations
Y = (yij) of a m1 ×m2 matrix A = (aij) where

yij = aij + εij , i = 1, . . . ,m1, j = 1, . . . ,m2,

here, εij are i.i.d sub-Gaussian random variables. We study the minimax op-
timal rates of convergence for the estimation of A assuming that there exist
q ∈ [0, 2) and s such that Ai· ∈ Bq(s) for any i = 1, . . . , n1. The minimax
rate of convergence characterizes the fundamental limitation of the estimation
accuracy. It also captures the interdependence between the different parameters
in the model. There is a rich line of work on such fundamental limits (see, for
example, [36, 54]).

The minimax risk depends crucially on the choice of the norm in the loss
function. In [KT15] we measure the estimation error in ‖ · ‖2,p-(quasi)norm: for
any A = (A1·, . . . , An1·)

T ∈ Rn1×n2 and p > 0 we define

‖A‖2,p =

(
n1∑
i=1

‖Ai·‖p2

)1/p

. (2.24)

Note that when m1 = 1, we obtain the problem of estimating of a vector
v = (vi) ∈ Bq(s) ⊂ Rm2 from noisy observations:

yi = vi + εi, i = 1, . . . ,m2.

Here εij are i.i.d. Gaussian N (0, σ2), σ2 > 0. This problem was considered in a
number of papers (see, for example, [26, 6, 1, 49]). Let ηvect denotes the minimax
rate of convergence in the vector case. For instance, the non-asymptotic mini-
max optimal rate of convergence for estimation of v in the l2−norm, obtained
in [6], is given by

ηvect(s) = σ2 s log
(em2

s

)
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when q = 0 and by

ηvect(s) =

(
s

[
σ2 log

(
1 +

σqm2

s

)]1−q/2
)
∨
(
s2/q

)
∨
(
m2 σ

2
)

when 0 < q < 2. Results obtained in [KT15] imply that the minimax rate of
convergence for the estimation of matrices under the row sparsity assumption
is m1 × ηvect. Thus, the problem reduces to estimating each row separately.
The additional matrix structure does not lead to improvement or deterioration
of the rate of convergence. A major focus in [KT15] is on the derivation of
lower bounds, which is a key step in establishing minimax optimal rates of
convergence.
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Chapter 3

Varying Coefficient Model

One of the fundamental tasks in statistics is to characterize the relationship
between a set of covariates and a response variable. Varying coefficient model
is commonly used for describing time-varying covariate effects and represents a
useful tool for exploring dynamic patterns in economics, epidemiology, ecology,
etc. It provides a more flexible approach than the classical linear regression
model and is often used to analyse the data measured repeatedly over time.

Let (Wi, ti, Yi), i = 1, . . . , n be sampled independently from the varying
coefficient model

Y = WT f(t) + σξ. (3.1)

Here, W ∈ Rp are random vectors of predictors, f(·) = (f1(·), . . . , fp(·))T is
an unknown vector-valued function of regression coefficients and t ∈ [0, 1] is a
random variable independent of W . Let µ denote its distribution. The noise
variable ξ is sub-exponential, independent of W and t and such that E(ξ) = 0
and E(ξ2) = 1, σ > 0 denotes the noise level. The goal is to estimate the vector
function f(·) on the basis of observations (Wi, ti, Yi), i = 1, . . . , n.

The varying coefficient models were introduced by Cleveland, Grosse and
Shyu [55] and Hastie and Tibshirani [34] and have been extensively studied in
the past 15 years. Existing methods typically provide asymptotic evaluation
of the precision of the estimation procedures under the assumption that the
number of observations tends to infinity. In practical applications, however,
only a finite number of measurements are available. In [KP13] and [KP15]
jointly with Marianna Pensky we focus on a non-asymptotic approach to this
problem.

3.1 Nuclear norm minimization approach

The estimation method proposed in [KP13] is based on the approximation of the
unknown functions fi(t) using a basis expansion. This approximation generates
the coordinate matrix A0. In the above model, some of the components of the
vector function f are constant. The larger the part of the constant regression
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coefficients, the smaller the rank of the coordinate matrix A0 (the rank of the
matrix A0 does not exceed the number of time-varying components of vector
f(·) by more than one). We suppose that the first element of this basis is just a
constant function on [0, 1]. In this case, if the component fi(·) is constant, then,
it has only one non-zero coefficient in its expansion over the basis. This suggests
the idea to take into account the number of constant regression coefficients using
the rank of the coordinate matrix A0.

In [KP13] we propose a novel estimation procedure which is based on recent
developments in matrix estimation. Our procedure involves estimating A0 us-
ing nuclear-norm penalization which is now a well-established proxy for rank
penalization in the compressed sensing literature.

The first step of our estimation method is the approximation of the un-
known functions fi(t) by expanding them over an appropriate basis. The pos-
sible choices of the basis include the standard Fourier basis and wavelets. Let
(φi(·))i=1,...,∞ be an orthonormal basis in L2 ((0, 1), dµ), l ∈ N and φ(·) =

(φ1(·), . . . , φl(·))T . We assume that basis functions satisfy the following condi-
tion: there exists cφ <∞ such that

∥∥φT (t)
∥∥2

2
=

l∑
j=1

|φj(t)|2 ≤ c2φ l, (3.2)

for any l ≥ 1 and any t ∈ [0, 1]. Note that this condition is satisfied for most of
the usual bases. We introduce the coordinate matrix A0 ∈ Rp×l with elements

a0
kj = 〈fk, φj〉L2(dµ) , k = 1, · · · , p, j = 1, · · · , l.

For each k = 1, . . . , p, we have

fk(t) =
l

Σ
j=1

a0
kjφj(t) + ρ

(l)
k (t). (3.3)

Denote the remainder by ρ(l)(·) = (ρ
(l)
1 (·), . . . , ρ(l)

p (·))T . We assume that fk is

well approximated by
l

Σ
j=1

a0
kjφj(t):

Assumption 14. We assume that the basis satisfies condition (3.2) and that
there exists a positive constant b such that, for any l ≥ 1∥∥∥ρ(l)(·)

∥∥∥
∞
≤ b l−γ , γ > 0. (3.4)

Often approximation in L2−norm gives better rates of convergence. In or-
der to get upper bounds on the mean squared error we will use the following
additional assumption:

Assumption 15. There exists b1 > 0 such that, for any l ≥ 1∥∥∥ρ(l)(·)
∥∥∥
L2(dµ)

≤ b1 l−(γ+1/2), γ > 0.
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We assume that the vectors Wi are i.i.d copies of a random vector W having
distribution Π on a given set of vectors X . Using rescaling, we can suppose
that ‖W‖2 ≤ 1. Let E

(
W WT

)
= Ω and ωmax, ωmin denote respectively its

maximal and minimal singular values. We need the following assumption on
the distribution of W :

Assumption 16. The matrix Ω = E
(
W WT

)
is positive definite.

We introduce the following notations:

ω = tr(Ω) ∨ (l ωmax) and n∗∗ =
C c2φ l log(d)

ω2
min

[(ω s) ∨ 1] ..

Denoting X = WφT (t), we can rewrite (3.1) in the following form

Y = tr
(
A0X

T
)

+WT ρ(l)(t) + σξ. (3.5)

We suppose that some of the functions fi(·) are constant and let s − 1 denote
the number of non-constant fi(·). Note that rank (A0) ≤ s. Based on the
observations (Yi, Xi), we define the following estimator of A0:

Â = arg min
A∈Rp×l

{
1

n

n∑
i=1

(Yi − 〈Xi, A〉)2
+ λ ‖A‖∗

}
, (3.6)

where λ is the regularization parameter. Subsequently, the estimator of the
coordinate matrix is plugged into the expansion yielding the estimator f̂(·) =(
f̂1(·), . . . , f̂p(·)

)T
of the vector function f(t). For this estimator we obtain up-

per bounds on the mean squared error
1

p

p

Σ
i=1
‖f̂i− fi‖2L2(dµ) and on the pointwise

estimation error
1

p

p

Σ
i=1
|f̂i(t)− fi(t)| for any t ∈ supp(µ):

Theorem 17. Let Assumptions 14, 16 and 1 hold. With probability greater
than 1− 4/d, one has

(a) ∀t ∈ supp(µ)

1

p

p

Σ
i=1
|f̂i(t)− fi(t)| ≤

C ‖φ(t)‖22 β
n

+
2 b2 s

p l2γ
,

(b) If, in addition, Assumption 15 holds

1

p

p

Σ
i=1
‖f̂i − fi‖2L2(dµ) ≤

C β

n
+

2 b21 s

p l(2γ+1)
,

where

β =



(
σ2 +

b2 (s− 1)

l2γ

)
ω s log(d)

pω2
min

, if n ≥ n∗∗

max

{(
σ2 +

b2 (s− 1)

l2γ
+ l ‖A0‖2∗

)
ω s log(d)

pω2
min

,
cφ ‖A0‖2∗

√
log(d) l n

ωmin p

}
, if not.
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These oracle inequalities are non-asymptotic and hold for finite values of p
and n.

3.2 Sparse high-dimensional varying coefficient
model

More recently a few authors considered still asymptotic but high-dimensional
approach to the problem. Here, we refer to the situation where both the num-
ber of unknown parameters and the number of observations are large and the
former may be of much higher dimension than latter. For example, Wei et al.
[56] applied group Lasso for variable selection, while Lian [40] used the extended
Bayesian information criterion. Fan et al. [28] applied nonparametric indepen-
dence screening. Their results were extended by Lian and Ma [41] to include
rank selection in addition to variable selection.

One important aspect that has not been studied in the existing literature is
the non-asymptotic approach to the estimation, prediction and variables selec-
tion in the high-dimensional varying coefficient model. Some interesting ques-
tions arise in this non-asymptotic setting. One of them is the fundamental
question of the minimax optimal rates of convergence. Our joint paper with M.
Pensky [KP15] presents the first non-asymptotic minimax study of the sparse
heterogeneous varying coefficient model.

In [KP15], we consider the case when the solution is sparse, in particular,
only a few of the covariates are present and only some of them are time de-
pendent. This setup is close to the one studied in a recent paper of Liang [40].
One important difference, however, is that in [40], the estimator is not adaptive
to the smoothness of the time dependent covariates. In addition, Liang [40]
assumes that all time dependent covariates have the same degree of smoothness
and are spatially homogeneous. On the contrary, we consider a much more flex-
ible and realistic scenario where the time dependent covariates possibly have
different degrees of smoothness and may be spatially inhomogeneous.

Modern technologies produce very high dimensional data sets and, hence,
stimulate an enormous interest in variable selection and estimation under a
sparse scenario. In such scenarios, penalization-based methods are particularly
attractive. Significant progress has been made in understanding the statistical
properties of these methods. For example, many authors have studied the vari-
able selection, estimation and prediction properties of the LASSO in the high-
dimensional setting. A related LASSO-type procedure is the group-LASSO,
where the covariates are assumed to be clustered in groups.

In order to construct a minimax optimal estimator, we introduce the block
Lasso which can be viewed as a version of the group LASSO. However, unlike
in group LASSO, where the groups occur naturally, the blocks in block LASSO
are driven by the need to reduce the variance as it is done, for example, in block
thresholding. Note that our estimator does not require the knowledge of which
of the covariates are indeed present and which are time dependent. It adapts to



3.2. SPARSE HIGH-DIMENSIONAL VCM 37

sparsity, to heterogeneity of the time dependent covariates and to their possibly
spatial inhomogeneous nature.

We start by using the basis expansion described in Section 3.1. Then, for
each function fj , j = 1, · · · , p, we divide its coefficients into M + 1 different
groups where group zero contains only coefficient aj0 for the constant function
φ0(t) = 1 and M groups of size d ≈ log n where M = l/d. We denote aj0 = aj0
and aji = (aj,d(i−1)+1, · · · , aj,di)T the sub-vector of coefficients of the function
fj in block i, i = 1, · · · ,M . We define the block norm of the matrix A as follows

‖A‖block =

p∑
j=1

M∑
i=0

‖aji‖2. (3.7)

Observe that ‖A‖block indeed satisfies the definition of a norm and is a sum of
absolute values of coefficients aj0 of functions fj and l2 norms for each of the
block vectors of coefficients aji, j = 1, · · · , p, i = 1, · · · ,M .

The penalty which we impose is related to both the ordinary and the group
LASSO penalties which have been used by many authors. The difference, how-
ever, lies in the fact that the structure of the blocks is not motivated by naturally
occurring groups (like, e.g., rows of the matrix A) but rather our desire to ex-
ploit sparsity of functional coefficients aji.

In [KP15], we construct an estimator Â of A0 as a solution of the following
convex optimization problem

Â = arg min
A

{
n−1

n∑
i=1

[
Yi − Tr(ATφ(ti)W

T
i )
]2

+ δ‖A‖block

}
, (3.8)

where δ is the regularisation parameter. Subsequently, we construct an estima-
tor f̂(t) = (f̂1(t), · · · , f̂p(t))T of the vector function f(t) using

f̂j(t) =

l∑
k=0

âjkφk(t), j = 1, · · · , p. (3.9)

In [KP15], we derive an upper bound for the risk of the estimator Â. In order to
obtain a benchmark of how well the procedure is performing, we also determine
lower bounds for the risk of any estimator Â and show that our estimator attains
those bounds within a constant (if all time-dependent covariates are spatially
homogeneous) or a logarithmic factor of the number of observations.
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Chapter 4

Network models and sparse
graphon estimation

A network model is a natural way of representing objects and their relationships.
Biological, social, technological networks can be studied as graphs, and the
analysis of random graphs has become crucial in order to understand features
of these systems.

The number of vertices n and the number of edges |E| are main graph integral
characteristics. The relation between these two parameters determines whether
graph is sparse or dense. The maximal number of edges in a simple undirected
graph is proportional to n2. A dense graph is a graph in which the number
of edges is close to this maximal number. Most real life networks are sparse.
For instance, in social networks such as Facebook, each user is connected with
a small group of friends rather then with the whole Facebook community. For
sparse networks the number of edges is much smaller then the maximal possible
number.

In general, sparse graphs are more difficult to handle than dense ones and
difficulties increase as the graph get sparser. Even the almost dense case with
|E| ∼ n2−o(1) is rather different from the dense case. The extremely sparse
case of graphs with bounded degree i.e. where all degrees are smaller than a
fixed positive integer is very different having many novel features. Networks
that occur in applications are usually between these two extremes of dense and
bounded degree graphs. They often correspond to inhomogeneous networks
with density of edges tending to 0 but with the maximum degree tending to
infinity as n grows.

4.1 Network sequence model

In [KTV16] jointly with Alexandre Tsybakov and Nicolas Verzelen we consider
a network defined as an undirected simple graph with n nodes. Assume that
we observe the values Aij ∈ {0, 1} where Aij = 1 is interpreted as the fact
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that the nodes i and j are connected and Aij = 0 otherwise. We set Aii = 0
for all 1 ≤ i ≤ n and we assume that Aij is a Bernoulli random variable with
parameter (Θ0)ij = P(Aij = 1) for 1 ≤ j < i ≤ n. The random variables Aij ,
1 ≤ j < i ≤ n, are assumed independent. We denote by A the adjacency matrix
i.e., the n × n symmetric matrix with entries Aij for 1 ≤ j < i ≤ n and zero
diagonal entries. Similarly, we denote by Θ0 the n× n symmetric matrix with
entries (Θ0)ij for 1 ≤ j < i ≤ n and zero diagonal entries. This is a matrix
of probabilities associated to the graph; the nodes i and j are connected with
probability (Θ0)ij . The model with such observations A′ = (Aij , 1 ≤ j < i ≤ n)
is a special case of the inhomogeneous random graph model that, for definiteness,
we will call the network sequence model1, to emphasize the parallel with the
Gaussian sequence model.

Our goal is to estimate the matrix of connexion probabilities Θ0 under the
Frobenius loss. In [KTV16] we are specially interested in the fundamental limits
of estimation accuracy and our aim is to get minimax rates of convergence on
suitable classes of matrices Θ0. We have two cases: the case of dense graph
when the maximum absolute value of the entries of Θ0 is a fixed constant and
the case of the sparse graph when connexion probabilities depend on n and go
to zero when n goes to infinity.

The estimation of Θ0 has already been considered by [20, 59, 18] but the
convergence rates obtained there are far from being optimal. More recently,
Gao et al. [31] have established the minimax estimation rates for Θ0 on classes
of block constant matrices and on the smooth graphon classes. Their analysis is
restricted to the dense case. In [KTV16] we provide an extension for the sparse
graphon model of minimax results in [31].

For example, consider the stochastic block models. Given an integer k and
any ρn ∈ (0, 1], let T [k, ρn] be the set of all probability matrices corresponding
to k-class stochastic block model with connection probability uniformly smaller
than ρn. Gao et al. [31] have proved that the minimax estimation rate over

T [k, 1] is of the order k2

n2 + log(k)
n . The following theorem extends their results

to an arbitrarily small ρn > 0:

Theorem 18. Consider the network sequence model. For all k ≤ n and all
0 < ρn ≤ 1,

inf
T̂

sup
Θ0∈T [k,ρn]

EΘ0

[
1

n2
‖T̂ −Θ0‖2F

]
≈ min

(
ρn

( log(k)

n
+
k2

n2

)
, ρ2
n

)
(4.1)

where EΘ0 denotes the expectation with respect to the distribution of A when the
underlying probability matrix is Θ0 and inf T̂ is the infimum over all estimators.

If ρn ≥ log(k)
n + k2

n2 , the minimax rate of estimation is of the order ρn

(
log(k)
n + k2

n2

)
.

In [KTV16] we show that this rate is achieved by the restricted least squares
estimator with r � ρn and by the least squares estimator if the partition

1In some recent papers, it is also called the inhomogeneous Erdös-Rényi model, which is
somewhat ambiguous since the words “Erdös-Rényi model” designate a homogeneous graph.
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is balanced and ρn ≥ k log(k)/n. For really sparse graphs, that is for ρn
smaller than log(k)

n + k2

n2 , the estimation problem becomes rather trivial. Let

A = 2
∑
j<i Ai,j/(n(n − 1)) denote the edge density of the graph. Then, we

have that, both the null estimator T̂ = 0 and the constant least squares esti-
mator Θ̂ with all entries Θ̂ij = A achieve the optimal rate ρ2

n.

4.2 Graphon model

Actually one can consider a more general model which is called the graphon
model. The reason for considering this more general model is the following one:
real-life networks are in permanent movement and often their size is growing.
Therefore, it is natural to look for a well-defined ”limiting object” independent
of the network size n and such that a stochastic network can be viewed as a
partial observation of this limiting object. Such objects called graphons play
a central role in the recent theory of graph limits introduced by Lovász and
Szegedy [42]. For a detailed description of this beautiful theory we refer to the
monograph by Lovász [43].

Graphons are symmetric measurable functions W : [0, 1]2 → [0, 1] and every
graph limit can be represented by a graphon. Graphons give a natural way of
generating random graphs [43, 25]: the probability that two distinct nodes i
and j are connected in the graphon model is the random variable

(Θ0)ij = W0(ξi, ξj) (4.2)

where ξ1, . . . , ξn are unobserved (latent) i.i.d. random variables uniformly dis-
tributed on [0, 1]. As above, the diagonal entries of Θ0 are zero. Conditionally
on ξ = (ξ1, . . . , ξn), the observations Aij for 1 ≤ j < i ≤ n are assumed to be
independent Bernoulli random variables with success probabilities (Θ0)ij .

For any positive integer n, a graphon function W0 defines a probability
distribution on graphs of size n. Note that this model is different from the
network sequence model since the observations Aij are no longer independent.
If W0 is a step-function with k steps, we obtain an analog of the stochastic
block model with k groups. More generally, many exchangeable distributions
on networks [25], including random dot product graphs [52] and some geometric
random graphs [47] can be expressed as graphons.

It is easy to see that the expected number of edges in model (4.2) is a
constant times the squared number of vertices, which corresponds to the dense
case. For a given ρn > 0, one can modify the definition (4.2) to get a random
graph model with O(ρnn

2) edges. It is usually assumed that ρn → 0 as n→∞.
The adjacency matrix A′ is sampled according to graphon W0 ∈ W with scaling
parameter ρn if for all j < i,

(Θ0)ij = ρnW0(ξi, ξj). (4.3)

The parameter ρn can be interpreted as the expected proportion of non-zero
edges. Alternatively, model (4.3) can be considered as a graphon model (4.2)
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that has been sparsified in the sense that its edges have been independently
removed with probability 1 − ρn and kept with probability ρn. This sparse
graphon model was considered in [4, 5, 57, 59].

Given an observed adjacency matrix A′ sampled according to the model
(4.2), the graphon function W0 is not identifiable. This is because the topology
of a network is invariant with respect to any change of labelling of its nodes.
Consequently, for any given function W0(·, ·) and a measure-preserving bijection
τ : [0, 1]→ [0, 1] (with respect to the Lebesgue measure), the functions W0(x, y)
and W τ

0 (x, y) := W0(τ(x), τ(y)) define the same probability distribution on
random graphs. This motivates considering the equivalence classes of graphons
that are weakly isomorphic. The corresponding quotient space is denoted by W̃.
For any estimator f̌ of f0 = ρnW0, we define the squared error in the following
way:

δ2(f̌ , f0) := inf
τ∈M

∫ ∫
(0,1)2

∣∣f0(τ(x), τ(y))− f̌(x, y)
∣∣2 dxdy

where M is the set of all measure-preserving bijections τ : [0, 1]→ [0, 1]. It has
been proved in [43, Ch.8,13] that δ(·, ·) defines a metric on the quotient space

W̃ of graphons.

In order to contrast the problem of graphon estimation with the estimation
of Θ0, one can invoke an analogy with the random design nonparametric re-
gression. Suppose that we observe (yi, ξi), i = 1, . . . , n, that are independently
sampled according to the model y = f(ξ) + ε where f is an unknown regression
function, ε is a zero mean random variable and ξ is distributed with some den-
sity h on [0, 1]. Given a sample of (yi, ξi), the estimation of f with respect to
the empirical loss is equivalent to the estimation of the vector (f(ξ1), . . . , f(ξn))
in, for instance, the Euclidean norm. On the other hand, estimation under
the integrated loss consists in constructing an estimator f̂ such that the inte-
gral

∫
(f̂(t) − f(t))2h(t)dt is small. Following this analogy, estimation of Θ0

corresponds to an empirical loss problem whereas the graphon estimation cor-
responds to an integrated loss problem. However, as opposed to nonparametric
regression, in the graphon models (4.2) and (4.3) the design ξ1, . . . , ξn is not
observed, which makes it quite challenging to derive the convergence rates in
these settings.

4.2.1 From probability matrix estimation to graphon es-
timation

To any n × n probability matrix Θ we can associate a graphon. This provides
a way of deriving an estimator of f0(·, ·) = ρnW0(·, ·) from an estimator of Θ0.

Given a n × n matrix Θ with entries in [0, 1], define the empirical graphon f̃Θ

as the following piecewise constant function:

f̃Θ(x, y) = Θdnxe,dnye (4.4)
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for all x and y in (0, 1]. For any W0 ∈ W, ρn > 0, and any estimator T̂ of Θ0

using the triangle inequality we get that

E
[
δ2(f̃T̂ , f0)

]
≤ 2E

[
1

n2
‖T̂ −Θ0‖2F

]
+ 2E

[
δ2
(
f̃Θ0

, f0

)]
. (4.5)

The bound on the integrated risk in (4.5) is the sum of two terms. The first

term containing ‖T̂ −Θ0‖2F is the estimation error term. The second term con-

taining δ2(f̃Θ0
, f0) measures the distance between the true graphon f0 and its

discretized version sampled at the unobserved random design points ξ1, . . . , ξn.
We call it the agnostic error. The behavior of δ2(f̃Θ0

, f0) depends on the topol-
ogy of the considered graphons.

In [KTV16] we obtain δ-norm non-asymptotic rates for graphon estimation
problem on classes of step functions (analogs of stochastic block models) and
on classes of smooth graphons in model (4.3). For instance, define W[k] the
collection of k-step graphons, that is the subset of graphons W ∈ W such that
for some Q ∈ Rk×ksym and some φ : [0, 1]→ [k],

W (x, y) = Qφ(x),φ(y) for all x, y ∈ [0, 1] . (4.6)

For the step function graphons, we get the following upper bound on the mini-
max risk:

inf
f̂

sup
W0∈W[k]

EW0

[
δ2
(
f̂ , f0

)]
≤ C

{[
ρn

(
k2

n2
+

log(k)

n

)
+ ρ2

n

√
k

n

]
∧ ρ2

n

}
(4.7)

where C is an absolute constant. Here, EW0
denotes the expectation with re-

spect to the distribution of observations A′ = (Aij , 1 ≤ j < i ≤ n) when the
underlying sparse graphon is ρnW0 and inf f̂ is the infimum over all estimators.

In [KTV16] we show that the upper bound (4.7) is optimal in a minimax sense
(up to a logarithmic factor in k in one of the regimes). The bounds (4.7) imply
that there are three regimes depending on the sparsity parameter ρn:

(i) Weakly sparse graphs: ρn ≥ log(k)√
kn
∨ ( kn )3/2. The minimax risk is of the

order ρ2
n

√
k/n, and thus it is driven by the agnostic error arising from the

lack of knowledge of the design.

(ii) Moderately sparse graphs: log(k)
n ∨

(
k
n

)2 ≤ ρn ≤ log(k)√
kn
∨
(
k
n

)3/2
. The risk

bound (4.7) is driven by the probability matrix estimation error. The

upper bound (4.7) is of the order ρn

(
k2

n2 + log(k)
n

)
, which is the optimal

rate of probability matrix estimation, cf. Theorem 18. It is optimal up to
log(k) factor with respect to the δ(·, ·) distance.

(iii) Highly sparse graphs: ρn ≤ log(k)
n ∨

(
k
n

)2
. The minimax risk is of the order

ρ2
n, and it is attained by the null estimator.
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In a work parallel to [KTV16], Borgs et al. [7] provide an upper bound for
the risk of step function graphon estimators in the context of privacy. When
there are no privacy issues, comparing the upper bound of [7] with the optimal
rate (4.7), we see that it has a suboptimal rate, which is the square root of the
rate given by (4.7) in the moderately sparse zone. Note also that the setting
in [7] is restricted to balanced partitions while in [KTV16] we consider more
general partitions.
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